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In the present contribution we compare the new Multitaper Filtering technique with
the very popular Filter Diagonalization Method. The substitution of a time-independent
problem, like the standard Schr¨odinger equation, by a time-dependent one from the Filter
Diagonalization Method allows the employment of and comparison with standard signal
processing filtration machinery. The use of zero-order prolate spheroidal tapers as filter-
ing functions is here extended and exactly formulated using techniques originating from
general investigations of prolate spheroidal wave functions. We investigate the mod-
ifications presented with respect to accuracy and general effectiveness. The approach
may be useful in various branches of physics and engineering sciences including signal
processing applications as well as possibly also in general time-dependent processes.
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1. INTRODUCTION

The filter diagonalization method was introduced in Neuhauser (1990) for
extracting highly excited rovibrational states from an arbitrary Hamiltonian, in
any prespecified energy range. In this approach the values of the associated auto-
correlation function were first filtered at various energies followed by an explicit
diagonalization of the filtered functions. Hence a time-dependent propagation was
combined with a time-independent procedure including a small matrix diago-
nalization. The filter technique of Neuhauser and coworkers thus overcomes the
disadvantage of the long propagation time, avoiding the limitations of the time-
dependent approach, caused by the uncertainty relations. At the same time it also
avoided the needs for the diagonalization of large matrices necessary in a purely
time-independent approach. It is also worth emphasizing that in the Neuhauser fil-
tering method one does not need to store the filter states themselves. Their approach
has been followed and extended by several other groups (see, e.g., Belkicet al.,
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2001; Chen and Guo, 1996; Mandelshtam and Taylor, 1997; Yu and Smith, 1997).
In Panget al. (1998) e.g., one extends the Filter Diagonalization Method to con-
sider arbitrary functions as filters rather than box filters or Gaussian exponentials
as it was done before.

Below we restrict our consideration to the filters of a special kind namely
prolate spheroidal wave functions of zero-order known in signal processing liter-
ature as “prolates,” or “Slepians.” Such a choice is motivated by the very special
and important properties possessed by these functions. We briefly review these in
section 3 (for more details, see Komarovet al., 1976; Landau and Pollak, 1961;
Slepian, 1964; Slepian and Pollak, 1961, 1962).

To employ the prolate spheroidal wave functions for windowing an accurate
numerical technique has been proposed in Abramovet al.(1984, 1991) and further
developed in Levitina and Brandas (2001). The new technique serves to compute
both theprolatesthemselves and various functionals of them, keeping at the same
time a desired accuracy. This is an important advantage since it will allow us
to exactly estimate the accuracy of the appropriate auxiliary computations and,
therefore, also of the ultimate spectral definition.

Formally any of the above functions may be used to investigate the spectrum.
However below we will show that the most accurate approach requires a set of
such functions constituting a basis on the interval of interest. The method is to
some extent resembling the multitaper method for spectral estimations.

The multitaper method was invented by Thomson (1982) and it is now known
as a very powerful method for doing power spectrum analysis. In particular it is
useful for cases where the spectral density is detailed or varies rapidly. It is presently
of use in many branches of science, e.g., in astronomy, climatology, geophysics,
etc. Using multitaper spectral estimations, zero-order prolate spheroidal tapers are
applied to the time series followed by averaging the resulting spectral estimators
(“eigenspectra”) thereby reducing the variance (McCoyet al., 1998; Percival and
Walden, 1993).

In our approach, to be presented below, we will not average the windowed data
(the autocorrelation function associated with a given solution to the Schr¨odinger
equation), but rather combine them to constitute a simple exponential function,
which explicitly depends on the desired eigenvalues. An attractive feature of our
proposed technique is that it first allows us to localize the eigenvalues situated
within the given interval under study and second to easily extract them from
the auxiliary computations offered by the method. Thereby at each stage we can
guarantee that the desired accuracy is always preserved.

We begin by making the idealistic assumption that the Hamiltonian spectrum
is purely discrete and simple and that the eigenvalues are well-resolved or sepa-
rated. In the last section we will discuss the possibilities to extend our approach to
more general cases. In passing we note that the above assumptions are meaningful
only in a local sense, i.e., within the interval of interest. In future applications
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we expect to be able to give up such an assumption completely allowing us to
investigate mixed spectra of a highly sophisticated behaviors.

2. FILTER DIAGONALIZATION METHOD FOR EXTRACTING
DISCRETE SPECTRUM EIGENVALUES

Before the work of Feitet al.(1982) appeared conventional methods for com-
puting the eigenvalues and eigenfunctions of the Schr¨odinger equation consisted
mainly in the diagonalization of a Hamiltonian matrix or in finding iterative numer-
ical solutions of a time-independent wave equation. The method proposed in Feit
et al.(1982), in contrast, is based directly on the spectral properties of solutions to
the time-dependent Schr¨odinger equation. The method requires the computation
of an autocorrelation function defined from a numerical solution related to a given
wave packet propagation. Resonant peaks of the Fourier transform of this auto-
correlation function correspond to the stationary states of the system. The latter
allows the localization of the actual eigenvalues with high accuracy. Because of its
low storage requirements and high numerical efficiency, this method is particularly
attractive for calculating high-energy eigenstates of many-dimensional problems.

Consider the evolution of an arbitrary initial wave packet3 9(Ex, t)|t=0 gov-
erned by the time-independent HamiltonianĤ through the Schr¨odinger equation

∂9

∂t
(Ex, t) = −iĤ9(Ex, t). (1)

HereĤ is a self-adjoint operator acting in a Hilbert spaceH; its spectrum is
assumed to be purely discrete and simple. In addition, sinceĤ is self-adjoint, its
eigenvalues are real and its eigenfunctions9k(Ex) constitute an orthonormal basis
in H (see, e.g., Akhiezer and Glazman, 1993). In particular, this implies that the
solution of (1) may be expanded in terms of9k(Ex):

9(Ex, t) =
∞∑

k=0

dk e−i εkt9k(Ex), (2)

wheredk, k = 0, 1. . . , stand for the expansion coefficients of the initial wave
packet:

dk = 〈9(Ex, 0)|9k(Ex)〉.
A direct consequence of Eq. (1) is that

9(Ex, t) = e−iĤ t9(Ex, 0)= Û (t)9(Ex, 0),

with Û (t) = e−iĤ t being the evolution operator.

3 In fact this wave packet is not arbitrary, although it may be of a very general form (see section 5).
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For the autocorrelation function

c(t) = 〈9(Ex, t)|9(Ex, 0)〉,
one obtains

c(t) =
∑
|dk|2 e−i εkt . (3)

Evidently

〈9(Ex, t ′′)|9(Ex, t ′)〉 = c(t ′′ − t ′).

Note that the correlation function might be computed at any pointt directly from
Eq. (1). Thus, instead of solving the original eigenvalue problem, one may con-
sider another one, i.e., of computing the parameters{εk, dk} which fit the set of
correlation function values.

Nevertheless, to extract the eigenstates accurately, a long propagation time is
required because of the energy-time uncertainty principle. In practice direct nu-
merical solutions of the “simplified” problem stated above face severe difficulties,
namely: it is often ill-conditioned and therefore requires some regularization; it is
further “bulky” and should only be treated as a whole, i.e., the selective extraction
of eigen-states at a certain energy range is not allowed.

An alternate indirect approach, the Filter Diagonalization Method was first
proposed by Neuhaser (1990) and later developed and modified by Mandelstam,
Taylor, and many others (see Belki´c, 2001; Chen and Guo, 1996; Mandelshtam
and Taylor, 1997; Pang and Neuhauser, 1996; Wall and Neuhauser, 1995; Yu and
Smith, 1997, and the literature therein). In this method, one first has to construct
the so-called filtered states, calculated at many energies within a selected range.
The filtered states can be constructed by applying filter operators to an arbitrary
initial reference state. The filter operator is designed to amplify the eigenstates near
a given energy, while it suppresses the rest. A small Hamiltonian matrix is then
evaluated on the basis of filtered functions, to yield the eigenvalues in the desired
range. An attractive feature of this technique is that the spectral information is
extracted from only a short segment of the correlation function; furthermore if
only the spectrum is needed, one does not have to explicitly construct the filtered
states.

The original problem of spectrum estimation is thus reduced to an algebraic
one, with the resulting Hamiltonian matrix being diagonally dominant, i.e., with
decaying off-diagonal elements. One can therefore, conveniently block diagonalize
the matrices, avoiding the necessity to diagonalize very large matrices.

Still, in so doing it is practically impossible to estimate the numerical error
caused by neglecting small off-diagonal elements. Another drawback is that the
matrices dealt with are typically singular and need to be regularized before diag-
onalization. Also we note that the number of the eigenvalues, localized within the
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range under consideration, is usually not known a priori, while at the same time the
result of spectral estimation depends to a large extent on this preassumed number.

Below we will propose a modification of the approaches mentioned above,
which both preserves the advantages of the filter diagonalization machinery and,
at the same time, provides the automatic accuracy control at all computational
stages, and results in matrices with purely zero off-diagonal elements escaping
the necessity to diagonalize singular matrices. We will instead map the spectrum
with a given resolution defined by an expected number of eigenvalues inside the
interval of interest and simply enlarge the resolution of our mapping accordingly
to see a more detailed picture. To proceed to our modification description, we need
first to briefly consider the basic properties of the windowing functions employed,
i.e., the zero-order prolate spheroidal wave functions.

3. PROLATE SPHEROIDAL WAVE FUNCTIONS
AND FINITE FOURIER TRANSFORM

Let us consider eigenvalues and eigenfunctions of the finite Fourier transform:

µψ(c, x) =
∫ √c

−√c
exp(i xy)ψ(c, y) dy. (4)

The eigenvaluesµl , l = 0, 1,. . . , are proved to be simple, while the correspond-
ing eigenfunctionsψl (c, x), l = 0, 1,. . . , are orthogonal onIc and constitute a
complete set inL2(Ic).

As is proved,
√

2π > |µ0| > |µ1| > · · · > 0. In addition, as soon asl exceeds
2c/π , the values of|µl | vanish exponentially fast with increasingl .

Eigenfunctionsψl (c, x) can be continued analytically through the complex
plane. Defined everywhere in (−∞,∞), they compose an orthogonal basis in the
classB of square integrable band limited functions, i.e., those representable as

f (x) = 1

2π

∫ √c

−√c
exp(i xy) F [ f ](y) dy. (5)

Here and belowF [ f ] is the Fourier transform off .
The eigenfunctionψ0(c, x), corresponding toµ0, is the most concentrated

inside Ic, among all functionsf from B, of a given total energy‖ f ‖2∞ =∫∞
−∞ | f (x)|2dx, i.e., has the largest fractional energy‖ψ0‖2c =

∫ √c
−√c |ψ0(c, x)|2dx

in Ic:

γ0 = |µ0|2
2π
= ‖ψ0‖2c
‖ψ0‖2∞

= max
f ∈B
‖ f ‖2c
‖ f ‖2∞

. (6)
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Analogously, for anyl > 0

γl = |µl |2
2π
= ‖ψl‖2c
‖ψl‖2∞

= max
f ∈Bl

‖ f ‖2c
‖ f ‖2∞

, (7)

whereBl consists of all functions fromB orthogonal toψ0(c, x), . . . , ψl−1(c, x).
As is well-known (Komarovet al., 1976; Slepian and Pollak, 1961)ψl (c, x)

coincides up to a scaling factor with the angular prolate spheroidal wave function
S0l (c, η) for x ∈ Ic, and the radial oneR0l (c, ξ ) for x /∈ Ic, with η, ξ related tox
by a simple scale change

x =
{√

cη x ∈ Ic,√
cξ x /∈ Ic.

The prolate spheroidal wave functions arise when variables are separated in the
Helmholtz equation in prolate spheroidal coordinates (Komarovet al., 1976; Morse
and Feshbach, 1953).

Defined inside the interval (−1, 1), the angular spheroidal functionsSml(η) are
the eigenfunctions of the following selfadjoint Sturm–Liouville singular spectral
problem withλ being an eigenvalue

d

dη
(1− η2)

d

dη
S+

[
λ+ c2(1− η2)− m2

1− η2

]
S= 0,

−1 < η < 1, m= 0, 1,. . . , (8)

posed on the set of functions bounded at the singular pointsη = ±1:

|S(η)| < ∞, η→±(1− 0). (9)

These functions are usually normalized by∫ 1

−1
S2(η) dη = 1.

For a given numberm the angular spheroidal functionsSml(η) are enumerated by
the number of zeroesl −m each one has insideI1 = (−1, 1). Hencel = m, m+
1, . . . . In accordance with the parity ofl −m, Sml(η) is either odd or even.

In the casem= 0 the solution to (8) bounded atη = ±1 behaves

S(η) ∼ const, asη→±(1− 0).

FunctionSml has an analytical continuation, which up to a factor coincides
with the radial prolate spheroidal wave function of the first kind—a solution to the
equation

d

dξ
(ξ2− 1)

d

dξ
Rml +

[
c2(ξ2− 1)− λml(c)+ m2

ξ2− 1

]
Rml = 0, 1< ξ < ∞,

(10)
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bounded atξ = ±1 and fixed by its asymptotic at infinity

R(1)
ml (ξ ) = 1

cξ
cos

(
cξ − l + 1

2
π

)
+O

(
1

ξ2

)
, ξ →∞. (11)

Like the angular function it is either odd or even depending onl −m: R(1)
ml (−ξ ) =

(−1)l−mR(1)
ml (ξ ). (For more details, see, e.g., Landau and Pollak, 1961; Slepian,

1964; Slepian and Pollak, 1961, 1962, as well as the monographs, Komarovet al.,
1976; Morse and Feshbach, 1953, and the literature cited therein.)

Because of their extremal properties as well as their double orthogonality,
prolatesare of special importance in signal, data, and image processing. Never-
theless, they are often reported as functions too difficult to handle numerically. In
fact, as far back as in the late eighties in Abramovet al.(1984, 1991) a numerical
technique was developed, which allowed the computation of both spheroidal wave
functions and various functionals of them for arbitrary valuem in a wide range of
parameter values. In Levitina and Br¨andas (2001) this technique received a new
development.

4. PROLATES FOR FILTER DIAGONALIZATION

We will now proceed with an analysis of the Fourier transform of the auto-
correlation functionc(t) = 〈9(Ex, t)|9(Ex, 0)〉. According to (3)

F−1[c(t)] =
∞∑

k=0

|dk|2δ(ω − εk). (12)

Such a formal representation seems at first useless for practical computations,
therefore one usually carries out some kind of a regularization or smoothing in
practice, like, e.g., applying the Discrete Fourier Transform instead of (12) (see,
e.g., Mandelshtam, 2001). As the next step the filtering process is introduced,
which extracts the eigenstates of energies located within a selected interval, say
(ω −Ä, ω +Ä), by suppressing the eigenstates outside this interval.

Up to now we have more or less reviewed existing procedures and numerical
techniques. To begin with some new ideas and suggestions, we introduce the
functionCi (ω) as

Cl (ω) = F−1[c(t)] ∗ θl (ω), (13)

where

θl (ω) =
{

S0l
(
TÄ, ω

Ä

)
, ω ∈ (−Ä,Ä),

0, ω ∈ (−∞,−Ä) ∪ (Ä,∞).
(14)
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Let further2l (t) be defined by

2l (t) =
{

S0l
(
TÄ, t

T

)
, t ∈ (−T, T),

ρl R
(1)
0l

(
TÄ, t

T

)
, t ∈ (−∞,−T) ∪ (T,∞).

Above the radial functionR(1)
ol (·) is multiplied by the factorρl to make it the

analytical continuation of the angular part. Then, according to (4), we obtain the
relations

F [θl (w)] = (−1)lµl

√
Ä

T
2l (t) F−1[θl (ω)] = µl

2π

√
Ä

T
2l (t) (15)

(we remind that the parity both ofθl (ω) and2l (t) is defined by that ofl ). Hence,
one can computeCl (ω) as

Cl (ω) = F−1[c(t)F [θl (ω)]] = (−1)l

2π
µl

√
Ä

T

∫ ∞
−∞

eiωt c(t)2l (t) dt. (16)

We emphasize that the right-hand side of (16) may be evaluated as accurate as
desired, with the numerical technique, advertised in Levitina and Br¨andas (2001),
providedc(t) is known at an arbitrary timet. Furthermore, forl < 2TÄ/π the
integral there might be approximated by∫ T

−T
eiωt c(t)2l (t) dt.

It follows from (6) and (7) that the error made by this approximation is majorated
by

max
t∈R
|c(t)|

{∫ ∞
−∞
|2l (t)|2 dt −

∫ T

−T
|2l (t)|2 dt

}1/2

≤ max
t∈R
|c(t)|
√

T

{
1− γl

γl

}1/2

.

(17)

With increasingTÄ, this value becomes negligibly small forl < 2TÄ/π and
almost infinite otherwise. Thus, to achieve a good accuracy in the calculation of
Cl (ω) is easier in the case of relatively large values ofTÄ.

Obtained directly from (12) and (13),Cl (ω) is

Cl (ω) =
∑

εk∈(ω−Ä,ω+Ä)

|dk|2θl (ω − εk). (18)

By the definition (14) the functionθl (ω) is of finite support, and therefore the
equality (18) is exact, compare the treatment in Mandelshtam (2001).

In the present approach one can “play” with two characteristic parrameters
and their respective intervals of interest namely time and frequency. The smaller
the value ofÄ is, the smaller is the number of eigenstates located inside (ω −
Ä, ω +Ä). If the eigenvalues are separated by some constant distance,Ä may
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be chosen so that every interval (ω −Ä, ω +Ä) contains at most one eigenvalue.
Suppose inside a particular interval (ω −Ä, ω +Ä) there is a unique eigenvalue
εK . To find its precise location, a single valueCl (ω) of a particular indexl is not
enough. Instead it may be obtained frome−i εK , which is expressed in terms of
Cl (ω), l = 0, 1,. . . . In view of (15) and (16) one can now compute at an arbitrary
t∗ 6= 0:

ei (ω−εK )t∗ = 1√
TÄ

∞∑
l=0

µl θl (ω − εK )2l (t∗) = 1√
TÄ|dK |2

∞∑
l=0

µl Cl (ω)2l (t∗).

(19)

Therefore|dK | andεK can be readily extracted from the absolute value and the
argument of the sum

∑∞
l=0µl Cl (ω)2l (t∗), respectively.

It may, however, happen in the computations thatei (ω−εK )t∗ ≈ 1; then to avoid
ambiguity in determiningεK the basic frequency can be shifted a little. Note that, if
the shifted interval (ω′ −Ä, ω′ +Ä) contains the same eigenvalue as (ω −Ä, ω +
Ä), then ∑∞

l=0µl Cl (ω)2l (t∗)∑∞
l=0µl Cl (ω′)2l (t∗)

= ei (ω−ω′)t∗ . (20)

At this point we remind the readers that the only sources of in-accuracies are the
numerical integration in the right side of (16) and the truncation of the infinite series
(19) by summing the first terms ofl ≤ 2TÄ

π
. In both cases the error may be easily

estimated a priori and expressed through the parameters‖Ĥ‖, T,Ä, uniformly in
ω. However in practice a very narrow intervalÄ might be required to localize
a single eigenvalue. Therefore, to preserve the accuracy, one has to enlargeT
respectively (see above).

Alternatively one can treat the intervalωmin, ωmax, containing several eigen-
valuesεk, k = K , K + 1, . . . , K + p. The problem at hand is then reducible to
a linear one (see, e.g., the details in Mandelshtam, 2001). Letωmin+Ä = ω1, <
ω2 < · · · < ωM = ωmax−Ä, where the numberM should be selected so that the
linear system to be considered below is resolvable (see Mandelshtam, 2001).

To proceed, we introduce an analogue of the Fourier basis considered in
Mandelshtam (2001). For anys ≤ M andl ≤ L ≤ 2TÄ

π
we define4

8sl(Ex) = F−1[9(Ex, t)] ∗ θl (ω)|ω=ωs.

As can be readily seen

8sl(Ex) = (−1)l

2π
µl

√
Ä

T

∫ ∞
−∞

eiωst9(Ex, t)2l (t) dt.

4 Here and below we keep both indexess, l in order to emphasize the possibility to vary any of parameters
M, L. In actual calculations one has first to enumerate the Fourier basis elements sequentially.
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and therefore with the initial wave package9(Ex, 0) we obtain

〈8sl(Ex)|9(Ex, 0)〉 = (−1)l

2π
µl

√
Ä

T

∫ ∞
−∞

eiωst c(t)2l (t) dt = Cl (ωs).

At the same time

8sl(Ex) =
K+p∑
k=K

|dk|2θl (ωs − εk)9k(Ex), (21)

which means that8sl(Ex) is a linear combination of eigenfunctions9k(Ex), k =
K , K + 1, . . . , K + p. Again we note that the above equality is exact. Let the
matrix B of elementsbsl

q establish the inverse relation

9q(Ex) =
∑
s≤M

l ≤L

bsl
q 8sl(Ex).

Then for any arbitraryt

Û (t)9q(Ex) =
∑
s≤M

l ≤L

bsl
q Û (t)8sl(Ex) = ei εqt9q(Ex) = ei εqt

∑
s≤M

l ≤L

bsl
q 8sl(Ex)

and multiplying the relation by8rp, we obtain the generalized eigen-value problem∑
s≤M

l ≤L

bsl
q Urp

sl = ei εqt
∑
s≤M

l ≤L

bsl
q Wrp

sl . (22)

Here Ebq = (. . . , bsl
q , . . .)T stands for theqth eigenvector, corresponding to the

eigenvalueei εqt , and the matrix elementsUrp
sl , Wrp

sl are computed by the formulas

Urp
sl = 〈8rp(Ex)|Û (t)|8sl(Ex)〉 = (−1)l+p

4π2
µlµp

Ä

T

×
∫ ∞
−∞

∫ ∞
−∞

eiωr t ′2p(t ′) e−iωst ′′2l (t
′′)c(t ′ − t ′′) dt′ dt′′,

Wrp
sl = 〈8rp(Ex)|8sl(Ex)〉 = (−1)l+p

4π2
µlµp

Ä

T

×
∫ ∞
−∞

∫ ∞
−∞

eiωr t ′2p(t ′) e−iωst ′′2l (t
′′)c(t ′ − t ′′) dt′ dt′′.

The above integrals may be truncated and approximated by the integrals over the
domain [−T, T ] × [−T, T ]; the truncation error estimate is obtained then in a
similar way as in (17).

Since the system (22) is exact, the only source of inaccuracy is the numerical
evaluation of the matrix elements. However, the latter procedure may constitute



P1: ZBU

International Journal of Theoretical Physics [ijtp] pp994-ijtp-473615 November 11, 2003 21:5 Style file version May 30th, 2002

Multitaper Techniques and Filter Diagonalization Methods—A Comparison 2541

an essential difficulty, even if the machinery presented in Levitina and Brandas
(2001) is applied.

To avoid this, we will concentrate on the Eqs. (18)–(20). After evaluating
Cl (ωs) according to (16), we combine them as

C(ωs) =
∞∑

t=0

µl Cl (ωs)2l (t∗), (23)

which is nothing but

C(ωs) =
√

TÄ
∑

εk∈(ωs−Ä,ωs−Ä)

|dk|2 ei (ωs−εk)t∗

=
√

TÄ eiωst∗
∑

εk∈(ωs−Ä,ωs−Ä)

|dk|2 e−i εkt∗ . (24)

One can offer various approaches to extract eigenvalues from (24). What we
present below is certainly not yet optimal.

We suggest to repeat the computation twice: first for the intervalωs ±Ä, and
a second time forωs+1± (Ä−1ω), where1ω = ωs+1− ωs is a characteristic
grid-size. Then the difference1s = e−iωst∗CÄ(ωs)− e−iωs+1t∗CÄ−1ω(ωs+1) reveals
the eigenvalues enclosed inIs = (ωs −Ä, ωs+2−Ä).

Let us for instance assume that 2×1ω is smaller than a typical distance
between two eigenvalues. Suppose the residue1s is not zero within the given
accuracy of computations. (The opposite would mean that there are no eigenvalues
within Is, or more accurate, that no knowledge on the eigenvalues insideIs is
contained inc(t), see section 5.) Then the eigenvalueεk ∈ Is is to be extracted
from the phase of1s, while the asociated coefficientdk follows from its argument.
Like in Mandelshtam (2001), there is no necessity to explicitly construct the filtered
states, if only the spectrum is sought.

On the contrary, if needed, the corresponding eigenfunction9k may be ex-
pressed in terms of8sl from Eq. (22).

The proposed technique resembles cartography. The considered interval is
split into small subintervals—cells. Each cell is inspected to contain eigenval-
ues. Those containing eigenvalues may be treated as “eigencells.” The associated
eigenvectors are linear combinations of actual eigenvectors, corresponding to the
eigenvalues hidden inside the cell. When increasing the resolution, i.e., splitting
the interval into smaller cells, we get more accurate knowledge about the eigen-
value location. Under the given assumptions on the Hamitonian, we necessarily
gain such a resolution that each cell contains at most one eigenvalue, i.e., more
resolution would add no new eigenvalues. As a result, as usual, the block of the
Hamiltonian matrix corresponding to the spectrum laying inside the interval in
hand is diagonalized.
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5. DISCUSSION AND CONCLUSIONS

We present a practical procedure for the description of computing eigen-
values and eigenfunctions for a selfadjoint operator of a general nature. The
present approach is based on the Filter Diagonalization technique, with prolate
spheroidal wave functions being employed for the filtering. Exclusive properties
of prolates, investigated by Slepianet al. (Landau and Pollak, 1961; Slepian,
1964; Slepian and Pollak, 1961, 1962), as well as the relevant numerical machin-
ery, invented by Abramovet al. (1984, 1991) and further developed by Levitina
and Brändas (2001), enable efficient extraction of eigenvalues and eigenfunc-
tions, at the same time keeping check on the accuracy at any computational
stage.

The spectrum of the operator is assumed to consist of simple eigenvalues but,
as appears from the above description, this condition is only used locally inside
the interval under study.

It is also clear that the presented approach allows the detection of multiple
eigenvalues, albeit with no opportunity to determine their multiplicity. From a
computational viewpoint, closely situated and coinciding (multiple) eigenvalues
are undistinguishable for lack of resolution and the present procedure treats them
as single simple eigenvalues. Note however that this drawback occurs in all other
known analogous, employing the autocorrelation function.

The point is here that the autocorrelation function involves no other “informa-
tion” on the spectrum than that presented in the initial wave packet. It is therefore
not possible to extract from (21) an eigenstate orthogonal to the initial wave packet
from its propagation: only those eigenvalues will be detected, which have nonzero
expansion coefficients, i.e.,dk 6= 0. Ideally, the initial packet should be a generat-
ing element for the operatorĤ . To accurately extract a multiple eigenvalue a single
wave packet propagation is not enough; a so-called generating basis is needed (see
Naimark, 1967).

Nevertheless our suggestions lead us to a new approach where one may in-
crease the resolution practically without any severe limitations from, e.g., the
uncertainty principle. Namely the latter restricts the productTÄ, while the resolu-
tion is defined by the grid-size1ω. The former knowledge, i.e., that corresponding
to, let us say, the parametersM andÄ, remains valid for computational purposes
with 2 M and/orÄ/2.
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